已知抛物线.
求抛物线顶点M的坐标;
若抛物线与x轴的交点分别为点A、B(点A在点B的左边),与y轴交于点C,点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q.当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
在对称轴右侧的抛物线上是否存在点P,使△PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
如图,自来水公司的主管道从A小区向北偏东60°方向直线延伸,测绘员在A处测得要安装自来水的M小区在A小区北偏东30°方向,测绘员沿主管道测量出AC=200米,小区M位于C的北偏西60°方向,
(1)请你找出支管道连接点N,使得N到该小区铺设的管道最短.(在图中标出点N的位置)
(2)求出AN的长.
某电视台举办的“2014中国好声音”海选中,甲、乙、丙三位评委对选手的综合表现,分别给出“淘汰”或“通过”的结论.
(1)请用树状图表示出三位评委给出A选手的所有可能的结论;
(2)比赛规则设定:三位评委中至少有两位评委给出“通过”的结论,那么这位选手才能进入下一轮比赛.试问对于选手A,进入下一轮比赛的概率是多少?
如图是由相同的小正方形组成的网格,A、B两点都在小正方形的顶点上.现请你在图1、图2中各画一个以A、B、C、D为顶点的菱形.要求:
(1)顶点C、D在小正方的顶点上;
(2)工具只用无刻度的直尺;
(3)所画的两个菱形不全等.
先化简,再求值:,其中
.
如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
求证:EF是⊙O的切线。