认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.
探究如图11-1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:
∵BO和CO分别是∠ABC和∠ACB的角平分线如图11-2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
如图11-3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)
结论: .
已知Rt△ABC,∠ACB=90°,AC=BC=4,点O是AB中点,点P、Q分别从点A、C出发,沿AC、CB以每秒1个单位的速度运动,到达点C、B后停止。连结PQ、点D是PQ中点,连结CD并延长交AB于点E.
(1)试说明:△POQ是等腰直角三角形;
(2)设点P、Q运动的时间为t秒,试用含t的代数式来表示△CPQ的面积S,并求出
S的最大值;
(3)如图2,点P在运动过程中,连结EP、EQ,问四边形PEQC是什么四边形,并说明理由;
(4)求点D运动的路径长(直接写出结果).
如图,在梯形中
,
,已知
,点
为
边上的动点,连接
,以
为圆心,
为半径的⊙
分别交射线
于点
,交射线
于点
,交射线
于
,连接
.
(1)求的长.
(2)当时,求
的长.
(3)在点的运动过程中,
①当时,求⊙
的半径.
②当时,求⊙
的半径(直接写出答案).
某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量(万件)与销售单价
(元)之间的关系可以近似地看作一次函数
.(利润=售价-制造成本)
(1)写出每月的利润(万元)与销售单价
(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月获得的利润为440万元?
(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?
如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.
(1)求证:AE平分∠DAC;
(2)若AB=4,∠ABE=60°.
①求AD的长;
②求出图中阴影部分的面积.
周末,小亮一家在瘦西湖游玩,妈妈在岸边处观看小亮与爸爸在湖中划船(如图).小船从
处出发,沿北偏东60°划行300米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到1米)?(参考数据:
,
)