如图1,矩形纸片ABCD中,AB=4,BC=4,将矩形纸片沿对角线AC向下翻折,点D落在点D’处,联结B D’,如图2,求线段BD’ 的长.
如图,已知抛物线的方程C1:(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2, 2),求实数m的值;
(2)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;
(3)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
某商场服装部销售一种名牌衬衫,平均每天可售出30件,每件盈利40 元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件.
(1)若商场要求该服装部每天盈利1200元,每件衬衫应降价多少元?
(2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.
如图,⊙P与扇形OAB的半径OA、OB分别相切于点C、D,与弧AB相切于点E,已知OA=15cm,∠AOB=60°,求图中阴影部分的面积.
已知:如图,以的边
为直径的
交边
于点
,且过 点
的切线
平分边
.
(1)求证:是
的切线;
(2)当满足什么条件时,以点
、
、
、
为顶点的四边形是平行四边形?请说明理由.
如图,已知反比例函数和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k)两点。
(1)求反比例函数的解析式;
(2)如图,已知点A在第一象限,且同时在上述两个函数的图象上, 求点A的坐标;
(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由。