汶川震后在社会各界的支持和帮助下,汶川一中临时搭建了学校,学校餐厅也做到了保证每天供应1000名学生用餐,每星期一有A、B两样菜可供选择(每个学生都将从二者中选一),为了让学生们能够安心上课对学生的用餐情况进行了调查。调查资料表明,凡是在本周星期一选A菜的,下周星期一会有20%改选B,而选B菜的,下周星期一则有30%改选A,若用A、B
分别表示在第n个星期一选A、B菜的人数。
(1)试以A表示A
;
(2)若A=200,求{A
}的通项公式;
(3)问第n个星期一时,选A与选B的人数相等?
如图,在四棱锥中,底面
是直角梯形,
∥
,
,
⊥平面SAD,点
是
的中点,且
,
.
(1)求四棱锥的体积;
(2)求证:∥平面
;
(3)求直线和平面
所成的角的正弦值.
2013年春运期间,长沙火车站在某大学开设了一个服务窗口。假设每一位顾客办理业务所需时间都是整数分钟,对这1000名顾客办理业务所需时间统计结果如下:
办理业务所需时间(分钟) |
1 |
2 |
3 |
4 |
5 |
人数 |
100 |
400 |
300 |
100 |
100 |
以记录的这1000名顾客办理业务所需时间的频率作为各所需时间发生的概率。
(1)求一位顾客办理业务时间不超过3分钟的概率;
(2)估计顾客办理业务所需时间的平均值。
已知直线.
(1)判断直线与
是否能平行; (2)当
时,求a的值.
已知集合,
.
(1)求;
(2)若,求
的取值范围。
已知函数.
(1)求函数的最小正周期和单调递增区间;
(2)将函数的图像上各点的纵坐标保持不变,横坐标缩短到原来的
,把所得到的图像再向左平移
单位,得到的函数
的图像,求函数
在区间
上的最小值.