某研究小组在电脑上进行人工降雨摸拟试验,准备用三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其试验数据统计如下:
方式 |
实施地点 |
大雨 |
中雨 |
小雨 |
摸拟试验总次数 |
![]() |
甲 |
4次 |
6次 |
2次 |
12次 |
![]() |
乙 |
3次 |
6次 |
3次 |
12次 |
![]() |
丙 |
2次 |
2次 |
8次 |
12次 |
假设甲、乙、丙三地实施的人工降雨彼此互不影响.
(Ⅰ)求甲、乙两地恰为中雨且丙地为小雨的概率;
(Ⅱ)考虑到旱情和水土流失,如果甲地恰需中雨即能达到理想状态,乙地必须是大雨才能达到理想状态,丙地只要是小雨或中雨就能达到理想状态,求甲、乙、丙三地中至少有两地降雨量达到理想状态的概率.
已知函数.
(1)若函数满足,且在定义域内
恒成立,求实数b的取值范围;
(2)若函数在定义域上是单调函数,求实数
的取值范围;
(3)当时,试比较
与
的大小.
已知圆,若椭圆
的右顶点为圆
的圆心,离心率为
.
(1)求椭圆的方程;
(2)若存在直线,使得直线
与椭圆
分别交于
两点,与圆
分别交于
两点,点
在线段
上,且
,求圆
的半径
的取值范围.
设函数,
的图象关于直线
对称,其中
为常数,且
.
(1)求函数的最小正周期;
(2)若的图象经过点
,求函数
在
上的值域.
如图,在平面直角坐标系中,点A(0,3),直线
:
,设圆
的半径为1,圆心在
上.
(1)若圆心也在直线
上,过点A作圆
的切线,求切线的方程;
(2)若圆上存在点
,使
,求圆心
的横坐标
的取值范围.
正项数列满足:
.
(1)求数列的通项公式
;
(2)令,求数列
的前
项和
.