(本小题满分14分)
如图1,在正三角形ABC中,AB=3,E、F、P分别是AB、AC、BC边上的点,AE=CF=CP=1。
将沿折起到
的位置,使平面
与平面BCFE垂直,连结A1B、A1P(如图2)。
(1)求证:PF//平面A1EB;
(2)求证:平面平面A1EB;
(3)求四棱锥A1—BPFE的体积。
(本小题满分12分)某工厂生产两种元件,其质量按测试指标划分为:大于或等于7.5为正品,小于7.5为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:
![]() |
7 |
7 |
7.5 |
9 |
9.5 |
![]() |
6 |
![]() |
8.5 |
8.5 |
![]() |
由于表格被污损,数据看不清,统计员只记得
,且
两种元件的检测数据的平均值相等,方差也相等.
(1)求表格中与
的值;
(2)若从被检测的5件B种元件中任取2件,求2件都为正品的概率.
(本小题满分12分)在三角形中,
.
(1)求角的大小;
(2)若,且
,求
的面积.
(本小题满分10分)已知为等比数列,其中
,且
成等差数列.
(1)求数列的通项公式;
(2)设,求数列
的前
项和
.
(本小题14分)设函数,
(1)当时,求函数f(x)的零点;
(2)当时,判断
的奇偶性并给予证明;
(3)当时,
恒成立,求
的最大值.
(本小题满分14分)某租凭公司拥有汽车100辆,当每辆汽车的月租为3000元时,可全部租出,当每辆车的月租金增加50元时,未租出的车辆会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每月需要维护费50元。
(1)当每辆车的月租金定位3600时,能租出多少辆车?
(2)当每辆车的月租金定位多少钱时,租凭公司的月收益最大?最大收益是多少?