(本小题满分12分)已知椭圆:
的左、右焦点分别为
离心率
,点
在且椭圆E上,
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点且不与坐标轴垂直的直线交椭圆
于
两点,线段
的垂直平分线与
轴交于点
,求点
横坐标的取值范围.
(Ⅲ)试用表示
的面积,并求
面积的最大值
已知等差数列满足:
,
,
的前n项和为
.
(1)求及
;
(2)令(n
N*),求数列
的前n项和
.
已知函数图象上一点
处的切线方程为
.
(1)求的值;
(2)若方程在
内有两个不等实根,求
的取值范围(其中
为自然对数的底数).
如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF 平面ABCD,BF=3,G,H分别是CE和CF的中点、
(1)求证:AF//平面BDGH:
(2)求
数列的前n项和为
。
(1)求数列的通项公式;
(2)等差数列的各项为正,
,又
成等比数列,若
,求
的前
项和
。
如图,四棱锥P﹣ABCD的底面ABCD为矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(1)求证:平面PAD与平面PAB垂直;
(2)求直线PC与直线AB所成角的余弦值.