如图,在三棱锥中,底面ABC,点、分别在棱上,且 http://wx.jtyjy.com/ (Ⅰ)求证:平面;(Ⅱ)当为的中点时,求与平面所成角的大小的余弦值;(Ⅲ)是否存在点,使得二面角为直二面角?并说明理由.
已知函数,设 (Ⅰ)求的单调区间; (Ⅱ)若以图象上任意一点为切点的切线的斜率恒成立,求实数的最小值; (Ⅲ)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由。
已知函数,若在上恒成立,求的取值范围.
用长为的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?
设函数在及时取得极值. (Ⅰ)求a、b的值; (Ⅱ)当时,求函数在区间上的最大值.
求由抛物线,直线,及轴所围成的平面图形的的面积
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号