已知Rt△ABC的顶点坐标A(-3,0),直角顶点B(-1,-),顶点C在
轴
上。
(1)求BC边所在直线的方程;
(2)圆M为Rt△ABC外接圆,其中M为圆心,求圆M的方程;
(3)直线与Rt△ABC外接圆相切于第一象限,求切线与两坐标轴所围成的三角形面
积最小时的切线方程。
设椭圆C:+
=1(a>b>0)过点(0,4),离心率为
.
(1)求C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.
已知A,B,C是椭圆W:+y2=1上的三个点,O是坐标原点.
(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;
(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.
每年的3月12日,是中国的植树节.林管部门在植树前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗的高度,规定高于128厘米的树苗为“良种树苗”,测得高度如下(单位:厘米):
甲:137,121,131,120,129,119,132,123,125,133;
乙:110,130,147,127,146,114,126,110,144,146.
(1)根据抽测结果,画出甲、乙两种树苗高度的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出对两种树苗高度的统计结论;
(2)设抽测的10株甲种树苗高度平均值为,将这10株树苗的高度依次输入按程序框图进行运算(如图),问输出的S大小为多少?并说明S的统计学意义;
(3)若小王在甲种树苗中随机领取了5株进行种植,用样本的频率分布估计总体分布,求小王领取到的“良种树苗”的株数X的分布列.
已知复数z1满足(z1-2)(1+i)=1-i(i为虚数单位),复数z2的虚部为2,且z1·z2是实数,求z2.
为了调查某大学学生在某天上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查.得到了如下的统计结果:
表1:男生上网时间与频数分布表
上网时间(分钟) |
[30,40) |
[40,50) |
[50,60) |
[60,70) |
[70,80] |
人数 |
5 |
25 |
30 |
25 |
15 |
表2:女生上网时间与频数分布表
上网时间(分钟) |
[30,40) |
[40,50) |
[50,60) |
[60,70) |
[70,80] |
人数 |
10 |
20 |
40 |
20 |
10 |
(1)从这100名男生中任意选出3人,求其中恰有1人上网时间少于60分钟的概率;
(2)完成下面的2×2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”?
上网时间少于60分钟 |
上网时间不少于60分钟 |
合计 |
|
男生 |
|||
女生 |
|||
合计 |
附:K2=
P(K2≥k0) |
0.100 |
0.050 |
0.025 |
0.010 |
0.005 |
k0 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |