(本小题满分15分)
如图,已知四棱锥中,平面
平面
,平面
平面
,
为
上任意一点,
为菱形
对角线的交点.
(Ⅰ)证明:平面平面
;
(Ⅱ)若,三棱锥
的体积是四棱锥
的体积的
,二面角
的大小为
,求
函数在一个周期内的图象如图所示,
为图象的最高点,
、
为图象与
轴的交点,且
为正三角形。
(Ⅰ)求的值及函数
的值域;
(Ⅱ)若,且
,求
的值。
设平面内的向量,
,
,点
是直线
上的一个动点,且
,求
的坐标及
的余弦值.
在△ABC中,角A,B,C所对的边长分别是a,b,c.
(1)若sin C + sin(B-A)=" sin" 2A,试判断△ABC的形状;
(2)若△ABC的面积S = 3,且c =
,C =
,求a,b的值.
已知与圆C:x2+y2-2x-2y+1=0相切的直线l交x轴,y轴于A,B两点,
OA|=a,|OB|=b(a>2,b>2).
(Ⅰ)求证:(a-2)(b-2)=2;
(Ⅱ)求线段AB中点的轨迹方程;
(Ⅲ)求△AOB面积的最小值.
在平面直角坐标系中,点P到两点
,
的距离之和等于4,设点P的轨迹为
.
(Ⅰ)写出C的方程;
(Ⅱ)设直线与C交于A,B两点.k为何值时
?此时
的值是多少?