如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP沿顺时针方向旋转,使点A与点C重合,这时P点旋转到M点。
(1)请画出旋转后的图形,并说明此时△ABP以点B为旋转中心旋转了多少度?
(2)求出PM的长度;
(3)请你猜想△PMC的形状,并说明理由。
希望中学八年级学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩较好的甲班和乙班5名学生的比赛成绩(单位:个)
1号 |
2号 |
3号 |
4号 |
5号 |
总数 |
|
甲班 |
100 |
98 |
110 |
89 |
103 |
500 |
乙班 |
89 |
100 |
95 |
119 |
97 |
500 |
经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其它信息作为参考.请你回答下列问题:
(1)求两班比赛数据的中位数;
(2)计算两班比赛数据的方差,并比较哪一个小;
(3)根据以上信息,你认为应该把冠军奖状发给哪一个班?简述理由.
如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.
选用适当的方法解下列方程:
(1)(2)
把两块全等的直角三角形和
叠放在一起,使三角板
的锐角顶点
与三角板
的斜边中点
重合,其中
,
,
,把三角板
固定不动,让三角板
绕点
旋转,设射线
与射线
相交于点
,射线
与线段
相交于点
.
(1)如图1,当射线经过点
,即点
与点
重合时,易证
.此时,
;将三角板
由图1所示的位置绕点
沿逆时针方向旋转,设旋转角为
.其中
,问
的值是否改变?答: (填“会”或“不会”);若改变,
的值为 (不必说明理由);
(2)在(1)的条件下,设,两块三角板重叠面积为
,求
与
的函数关系式.(图2,图3供解题用)
某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,对往年的市场行情和生产情况进行了调查,提供了如下两个信息图,如甲、乙两图。
注:甲、乙两图中的A、B、C、D、E、F、G、H所对应的纵坐标分别指相应月份每千克该种蔬菜的售价和成本(生产成本6月份最低,甲图的图象是线段,乙图的图象是抛物线的一部分)。请你根据图象提供的信息说明:
(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益=售价-成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?最大收益是多少?说明理由。