游客
题文

为了参加2011年国际铁人三项(游泳、自行车、长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.

科目 数学   题型 解答题   难度 中等
知识点: 应用类问题
登录免费查看答案和解析
相关试题

作图题:(要求保留作图痕迹,不写做法)

(1)作△ABC中BC边上的垂直平分线EF(交AC于点E,交BC于点F);
(2)连结BE,若AC=10,AB=6,求△ABE的周长.

化简再求值:,其中

已知:如图,点A、B、C在同一直线上,AD∥CE,AD=AC,∠D=∠CAE.求证:DB=AE.

如图①,OP是∠MON的平分线。
(1)请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:
(2)如图②,在△ABC中,∠ACB是直角,∠B=60゜,AD、CE分别是∠BAC,∠BCA的平分线,AD、CE相交于点F,请你判断并写出EF与DF之间的数量关系并证明。
(3)如图③,在△ABC中,如果∠ACB不是直角,而(2)中的其他条件不变。请问,你在(2)中所得结论是否仍然成立? ______________(填 是或否)。
(2)证明:

如图,△ABC中,点D是BC中点,连接AD并延长到点E,连接BE。

(1)若要使△ACD≌△EBD,应添上条件:__________
(2)证明上题:
(3)在△ABC中,若AB=5.AC=3,可以求得BC边上的中线AD的取值范围AD<4.请看解题过程:
由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而AD=AE,
则AD<4,请参考上述解题方法,可求得AD>m,则m的值为_______________.
(4)证明:直角三角形斜边上的中线等于斜边的一半。(提示:画出图形,写出已知,求证,并加以证明)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号