(本小题满分12分)
某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)
如下:
(I)请画出适当的统计图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩
的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答
结论). (Ⅱ)从甲、乙两人的10次成绩中各随机抽取一次,求抽取的成绩中至少有一个低
于12.8秒的概率.
(III)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]
之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率
(本小题10分)
设圆上一点关于直线
的对称点仍在圆上,且与直线
相交的弦长为
,求圆的方程.
(本小题8分)
如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF//AC,AB=,CE=EF=1,
.
(1)求证:AF//平面BDE;
(2)求异面直线AB与DE所成角的余弦值.
(本小题6分)
如图,矩形的两条对角线相交于点
,
边所在直线的方程为
, 点
在
边所在直线上.求:
(1)边所在直线的方程;
(2)边所在的直线方程.
(本小题12分)
已知圆C:;
(1)若直线过
且与圆C相切,求直线
的方程.
(2)是否存在斜率为1直线,使直线
被圆C截得弦AB,以AB为直径的圆经过原点O. 若存在,求
出直线的方程;若不存在,说明理由.
(本小题10分)
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC.
(1)求证:平面ABFE⊥平面DCFE;
(2)求四面体B—DEF的体积.