(本小题满分12分)
某班甲、乙两名同学参加l00米达标训练,在相同条件下两人l0次训练的成绩(单位:秒)
如下:
(I)请画出适当的统计图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩
的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答
结论). (Ⅱ)从甲、乙两人的10次成绩中各随机抽取一次,求抽取的成绩中至少有一个低
于12.8秒的概率.
(III)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]
之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率
已知数列中,
,且当
时,函数
取得极值。
(1)若,求数列
的通项公式;
(2)设数列的前
项和为
,试证明:
时,
.
在高中“自选模块”考试中,某考场的每位同学都选了一道数学题,第一小组选《数学史与不等式选讲》的有1人,选《矩阵变换和坐标系与参数方程》的有5人,第二小组选《数学史与不等式选讲》的有2人,选《矩阵变换和坐标系与参数方程》的有4人,现从第一、第二两小组各任选2人分析得分情况
(1)求选出的4 人均为选《矩阵变换和坐标系与参数方程》的概率;
(2)设为选出的4个人中选《数学史与不等式选讲》的人数,求
的分布列和数学期望
如图,侧棱垂直底面的三棱柱的底面
位于平行四边形
中,
,
,
,点
为
中点.
(1)求证:平面平面
.
(2)设二面角的大小为
,直线
与平面
所
成的角为,求
的值.
已知函数
(1)求函数的最小值和最小正周期;
(2)设△的内角
对边分别为
,且
,若
与
共线,求
的值.
设为实数,函数
.
(1)当时,判断函数
的奇偶性;
(2)求的最小值;