(本小题满分l2分)已知函数
,
∈R.
(I)讨论函数的单调性;
(Ⅱ)当时,
≤
恒成立,求
的取值范围
(本小题满分15分)在直三棱柱中,底面
是边长为2的正三角形,
是棱
的中点,且
.
(1)试在棱上确定一点
,使
平面
;
(2)当点在棱
中点时,求直线
与平面
所成角的大小的正弦值。
(本小题满分15分)已知数列的前
项和
满足:
(
为常数,且
).
(1)设,若数列
为等比数列,求
的值;
(2)在满足条件(1)的情形下,设,数列
的前
项和为
,若不等式
对任意的
恒成立,求实数
的取值范围.
(本小题满分14分)在中,角
所对的边分别为
,角
为锐角,且
(1)求的值;
(2)若,求
的最大值。
(本小题满分14分)已知
(1)求的值;
(2)求的值。
本题共有3个小题,第(1)小题4分,第(2)小题6分,第(3)小题8分
已知函数,若在定义域内存在
,使得
成立,则称
为函数
的局部对称点.
(1)若R且
,证明:函数
必有局部对称点;
(2)若函数在区间
内有局部对称点,求实数
的取值范围;
(3)若函数在R上有局部对称点,求实数
的取值范围.