甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为,固定部分为a元。
(1)把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
已知函数。
(1)时,求
的最小值;
(2)若且
在
上是单调函数,求实数
的取值范围。
已知函数,
。
(1)求函数的单调区间;
(2)若与
的图象恰有两个交点,求实数
的取值范围。
设,
,
均为实数。求
(
的共轭复数)
设函数。
(1)求在点
处的切线方程;
(2)求在区间
的最大值与最小值。
学校在开展学雷锋活动中,从高二甲乙两班各选3名学生参加书画比赛,其中高二甲班选出了1女2男,高二乙班选出了1男2女。
(1)若从6个同学中抽出2人作活动发言,写出所有可能的结果,并求高二甲班女同学,高二乙班男同学至少有一个被选中的概率。
(2)若从高二甲班和高二乙班各选一名现场作画,写出所有可能的结果,并求选出的2名同学性别相同的概率。