游客
题文

甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为,固定部分为a元。
(1)把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

中,分别是角的对边,向量,且//
(Ⅰ)求角的大小;
(Ⅱ)设,且的最小正周期为,求在区间上的最大值和最小值.

已知函数
(Ⅰ)设函数的图像的顶点的纵坐标构成数列,求证:为等差数列;
(Ⅱ)设函数的图像的顶点到轴的距离构成数列,求的前项和

定义在上的单调函数满足,且对任意都有
(1)求证:为奇函数;
(2)若对任意恒成立,求实数的取值范围.

某医药研究所开发一种新药,据监测,如果成人按规定剂量服用该药,服药后每毫升血液中的含药量与服药后的时间之间近似满足如图所示的曲线.其中是线段,曲线段是函数是常数的图象.

(1)写出服药后每毫升血液中含药量关于时间的函数关系式;
(2)据测定:每毫升血液中含药量不少于时治疗有效,假若某病人第一次服药为早上,为保持疗效,第二次服药最迟是当天几点钟?
(3)若按(2)中的最迟时间服用第二次药,则第二次服药后再过,该病人每毫升血液中含药量为多少

已知函数,且
(1)求的值,并确定函数的定义域;
(2)用定义研究函数范围内的单调性;
(3)当时,求出函数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号