(本小题满分12分)
某校高三数学竞赛初赛考试后,对考生成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分成六组,第一组
、第二组
…第六组
. 如图为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人.
(Ⅰ)请补充完整频率分布直方图,并估
计这组数据的平均数M;
(Ⅱ)现根据初赛成绩从第四组和第六组
中任意选2人,记他们的成绩分别
为. 若
,则称此二
人为“黄金帮扶组”,试求选出的二
人错误!链接无效。的概率;
(Ⅲ)以此样本的频率当作概率,现随机在这组样本中选出的3名学生,求成绩不低于
120分的人数分布列及期望
.
(本小题满分12分)甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为
.
(Ⅰ)求甲至多命中2个且乙至少命中2个的概率;
(Ⅱ)若规定每投蓝一次命中得3分,未命中得-1分,求乙所得分数的概率分布和数学期望.
(本小题满分12分)在直角坐标平面内,已知点,其中
.
(Ⅰ)若,求角
的弧度数;
(Ⅱ)若,求
的值.
23.(本小题满分10分)
将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为
,正面向上的次数为偶数的概率为
.
(Ⅰ)若该硬币均匀,试求与
;
(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较
与
的大小.
22.(本小题满分10分)
已知动圆过点
且与直线
相切.
(Ⅰ)求点的轨迹
的方程;
(Ⅱ)过点作一条直线交轨迹
于
两点,轨迹
在
两点处的切线相交于点
,
为线段
的中点,求证:
轴.
(选修4—5:不等式选讲)
求函数最大值.