22.(本小题满分10分)
已知动圆过点
且与直线
相切.
(Ⅰ)求点的轨迹
的方程;
(Ⅱ)过点作一条直线交轨迹
于
两点,轨迹
在
两点处的切线相交于点
,
为线段
的中点,求证:
轴.
(本小题满分12分)已知函数,
(Ⅰ)试用含的式子表示b,并求函数
的单调区间;
(Ⅱ)已知为函数
图象上不同两点,
为
的中点,记AB两点连线斜率为K,证明:
已知椭圆的离心率
,短轴长为
.
(Ⅰ)求椭圆方程;(Ⅱ)若椭圆与轴正半轴、
轴正半轴的交点分别为
、
,经过点
且斜率为
的直线
与椭圆交于不同的两点
、
.是否存在常数
,使得向量
共线?如果存在,求
的值;如果不存在,请说明理由.
(本小题满分12分)如图,四边形ABCD是边长为1的正方形, ,
,且MD=NB=1,E为BC的中点 (1)求异面直线NE与AM所成角的余弦值
(2)在线段AN上找点S,使得ES平面AMN,并求线段AS的长;
(本小题满分12分)已知等差数列为递增数列,且
是方程
的两根,数列
的前
项和
;
(1)求数列和
的通项公式;
(2)若,
为数列
的前n项和,证明:
(本小题满分14分)
设函数(1)当
时,曲线
在点
处的切线斜率
(2)求函数的单调区间与极值;
(3)已知函数有三个互不相同的零点0,
若对任
意的
恒成立,求
的取值范围。