为了了解某校高中部学生的体能情况,体育组决定抽样三个年级部分学生进行跳绳测试,并将所得的数据整理后画出频率分布直方图.已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数是5.
(Ⅰ)求第四小组的频率和参加这次测试的学生人数;
(Ⅱ)在这次测试中,学生跳绳次数的中位数落在第几小组内?
(Ⅲ)参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an与bn;(Ⅱ)设数列{cn}满足
,求{cn}的前n项和Tn.
已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量
(Ⅰ)求角A的大小;
(Ⅱ)若,试判断b·c取得最大值时△ABC形状.
如图,在三棱锥中,
底面
,
点,
分别在棱
上,且
(Ⅰ)求证:平面
;
(Ⅱ)当为
的中点时,求
与平面
所成的角的大小;
已知,数列
是首项为a,公比也为a的等比数列,令
,求数列
的前
项和
。
已知二次函数的二次项系数为
,且不等式
的解集为
,
(1)若方程有两个相等的实根,求
的解析式;
(2)若的最大值为正数,求
的取值范围.