(本小题满分16分)
对于函数,若存在实数对(
),使得等式
对定义域中的每
一个都成立,则称函数
是“(
)型函数”.
(1)判断函数是否为“(
)型函数”,并说明理由;
(2)已知函数是“(1,4)型函数”, 当
时,都有
成立,且当
时,,若,试求
的取值范围.
已知m=(2cos x+2sin x,1),n=(cos x,-y),且m⊥n.
(1)将y表示为x的函数f(x),并求f(x)的单调增区间;
(2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f=3,且a=2,b+c=4,求△ABC的面积.
已知m=,n=
,f(x)=m·n,且f
=
.
(1)求A的值;
(2)设α,β∈,f(3α+π)=
,f
=-
,求cos (α+β)的值.
已知函数f(x)=sin ωx·cos ωx+cos 2ωx-
(ω>0),其最小正周期为
.
(1)求f(x)的解析式.
(2)将函数f(x)的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间
上有且只有一个实数解,求实数k的取值范围.
在△ABC中,角A,B,C的对边分别为a,b,c,已知角A=, sin B=3sin C.
(1)求tan C的值;
(2)若a=,求△ABC的面积.
已知函数f(x)=sin ωx-sin2
+
(ω>0)的最小正周期为π.
(1)求ω的值及函数f(x)的单调递增区间;
(2)当x∈时,求函数f(x)的取值范围.