为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)
(Ⅰ)求x,y ;
(Ⅱ)若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率。
..(本题满分12分) 本题共有2个小题,第1小题满分6分,第2小题满分6分.
(理)如图,已知矩形的边
与正方形
所在平面垂直,
,
,
是线段
的中点。
(1)求证:平面
;
(2)求二面角的大小。
已知抛物线的顶点在坐标原点O,焦点F在x正半轴上,倾斜角为锐角的直线过F点。设直线
与抛物线交于A、B两点,与抛物线的准线交于M点,
(I)若,求直线
的斜率;
(II)若点A、B在x轴上的射影分别为A1、B1,且成等差数列,求
的值。
已知函数 ,
.
(Ⅰ)当 时,求函数
的最小值; (Ⅱ)当
时,讨论函数
的单调性;
(Ⅲ)是否存在实数,对任意的
,且
,有
,恒成立,若存在求出
的取值范围,若不存在,说明理由。
如图,在四棱锥中,平面
平面
.底面
为矩形,
,
.
(Ⅰ)求证:;
(Ⅱ)求二面角的大小.
数列的前
项和记为
,
,点
在直线
上,
.
(Ⅰ)当实数为何值时,数列
是等比数列?
(Ⅱ)在(Ⅰ)的结论下,设,
,
是数列
的前
项和,求
。