已知棱长为的正方体
,点
、
分别是
和
的中点,建立如图所示的空间直角坐标系.
(1)写出图中、
的坐标;
(2)求直线与
所成角的余弦值.
已知函数,
,点
是函数
图象上任意一点,直线
为函数
的图象在
处的切线.
(I)求直线的方程;
(II)若直线与
的图象相切,求
和
的取值范围.
已知椭圆的方程是
,椭圆的左顶点为
,离心率
,倾斜角为
的直线
与椭圆交于
、
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设向量(
),若点
在椭圆
上,求
的取值范围.
已知两地的距离是120km.假设汽油的价格是6元/升,以
km/h(其中
)速度行驶时,汽车的耗油率为
L/h,司机每小时的工资是28元.那么最经济的车速是多少?如不考虑其他费用,这次行车的总费用是多少?
已知函数的图象过原点,且
在
、
处取得极值.
(Ⅰ)求函数的单调区间及极值;
(Ⅱ)若函数与
的图象有且仅有一个公共点,求实数
的取值范围.
(本小题满分12分)已知抛物线的准线方程
,
与直线
在第一象限相交于点
,过
作
的切线
,过
作
的垂线
交x轴正半轴于点
,过
作
的平行线
交抛物线
于第一象限内的点
,过
作抛物线
的切线
,过
作
的垂线
交x轴正半轴于点
,…,依此类推,在x轴上形成一点列
,
,
,…,
,设点
的坐标为
(Ⅰ)试探求关于
的递推关系式;
(Ⅱ)求证:;
(Ⅲ)求证:.