如图:已知三棱锥中,
面
,
,
,
为
上一点,
,
分别为
的中点.
(1)证明:.
(2)求面与面
所成的锐二面角的余弦值.
(3)在线段(包括端点)上是否存在一点
,使
平面
?若存在,确定
的位置;若不存在,说明理由.
平面直角坐标系
中,已知椭圆
:
的离心率为
,且点(
,
)在椭圆
上.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设椭圆
:
,
为椭圆
上任意一点,过点
的直线
交椭圆
于
两点,射线
交椭圆
于点
.
(ⅰ)求
的值;
(ⅱ)求
面积的最大值.
设函数
. 已知曲线
在点
处的切线与直线
平行.
(Ⅰ)求
的值;
(Ⅱ)是否存在自然数
,使得方程
在
内存在唯一的根?如果存在,求出
;如果不存在,请说明理由;
(Ⅲ)设函数
(
表示,
中的较小值),求
的最大值.
已知数列
是首项为正数的等差数列,数列
的前
项和为
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)设
,求数列
的前
项和
.
如图,三棱台DEF-ABC中,
分别为
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)若
求证:平面
平面
.
中,角 所对的边分别为 .已知 求 和 的值.