设函数是定义在
上的奇函数,当
时,
为实数);
(1)当时,求函数
的解析式;
(2)若,试判断
在
上的单调性;
(3)是否存在a,使得当时,
有最大值
。
设p :指数函数在R上是减函数;q:
。若p∨q是真命题,p∧q是假命题,求
的取值范围。
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为。
(1)求双曲线C的方程;
(2)若直线l:与双曲线C恒有两个不同的交点A和B,且
(其中O为原点),求k的取值范围.
若函数,当x=2时,函数f(x)有极值
.
(1)求函数f(x)的解析式;(2)若函数f(x)=k有3个解,求实数k的取值范围.
已知是椭圆
的两个焦点,
是椭圆上的第一象限内的点,且
.(1)求
的周长;(2)求点
的坐标.
(本小题満分10分)如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点.
(Ⅰ)求直线AC与PB所成角的余弦值;
(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.