下表提供了某厂节能降耗技术改革后生产甲产品过程中记录的产量x(t)与相应的生产能耗Y(吨标准煤)的几组对照数据:
x |
3 |
4 |
5 |
6 |
y |
2.5 |
3 |
4 |
4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)已知该厂技改前生产100 t甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100 t甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:3×2.5 + 4×3 + 5×4 + 6×4.5=66.5)
某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题。
(1)求全班人数及分数在之间的频数;
(2)估计该班的平均分数,并计算频率分布的直方图中的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率。
已知等比数列{an}的首项为a,公比为 q,其前n项和为Sn用a和q表示Sn,并证明你的结论.
如图,已知四棱锥P—ABCD中,底面ABCD是直角梯长,AB//CD,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1。
(1)求证:BC⊥平面PAC;
(2)若M是PC的中点,求三棱锥M—ACD的体积。
已知向量m=(cosx,sinx),n=(cosx,cosx)(x∈R),设函数f(x)=m·n
(1)求 f(x)的解析式,并求最小正周期.
(2)若函数 g(x)的图像是由函数 f(x)的图像向右平移个单位得到的,求g(x)的最大值及使g(x)取得最大值时x的值.
(本小题满分7分)选修4-5:不等式选讲
已知为正数,求证:
.