某种零件按质量标准分为五个等级.现从一批该零件中随机抽取
个,对其等级进行统计分析,得到频率分布表如下:
等级 |
![]() |
![]() |
![]() |
![]() |
![]() |
频率 |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)在抽取的个零件中,等级为
的恰有
个,求
;
(Ⅱ)在(Ⅰ)的条件下,从等级为和
的所有零件中,任意抽取
个,求抽取的
个零
件等级恰好相同的概率.
如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,M为SA的中点,N为CD的中点.⑴证明:平面SBD⊥平面SAC;⑵证明:直线MN//平面SBC.
已知椭圆>b>
的离心率为
且椭圆上一点到两个焦点的距离之和为
.斜率为
的直线
过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).
(1)求椭圆的标准方程;
(2)求m的取值范围.
(3)试用m表示△MPQ的面积S,并求面积S的最大值.
已知函数
(1)求函数的极值点;
(2)若直线过点(0,—1),并且与曲线
相切,求直线
的方程;
(3)设函数,其中
,求函数
在
上的最小值.(其中e为自然对数的底数)
.
观察下表:
1,
2,3,
4,5,6,7,
8,9,10,11,12,13,14,15,
……
问:(1)此表第n行的第一个数与最后一个数分别是多少?
(2)此表第n行的各个数之和是多少?
(3)2012是第几行的第几个数?
.
如图,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,BAD=60°.
(1)证明:面PBD⊥面PAC;
(2)求锐二面角A—PC—B的余弦值.