某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).
(Ⅰ)A类工人中和B类工人各抽查多少工人?
(Ⅱ)从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2
表1:
生产能力分组 |
![]() |
![]() |
![]() |
![]() |
![]() |
人数 |
4 |
8 |
![]() |
5 |
3 |
表2:
生产能力分组 |
![]() |
![]() |
![]() |
![]() |
人数 |
6 |
y |
36 |
18 |
(i)、先确定,再完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
(ii)分别估计
类工人和
类工人生产能力的平均数,并估计该工厂工人和生产能力的平均数(同一组中的数据用该区间的中点值作代表)。
为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔
热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
(0
x
10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
已知数列,计算
,猜想
的表达式,并用数学归纳法证明猜想的正确性
设.
(1)求函数的单调区间;
(2)若当时
恒成立,求
的取值范围。
已知函数在
轴上的截距为1,且曲线上一点
处的切线斜率为
.(1)曲线在P点处的切线方程;(2)求函数
的极大值和极小值
(本题14分)
已知函数R).
(1)若曲线在点
处的切线与直线
平行,求
的值;
(2)在(1)条件下,求函数的单调区间和极值;
(3)当,且
时,证明: