(本小题满分10分)
某商场试销一种成本为每件60元的服装,经试销发现,销售量(件)与销售单价
(元)符合一次函数
,且
时,
;
时,
.
(1)求一次函数的表达式;
(2)若该商场获得利润为元,试写出利润
与销售单价
之间的关系式;
(3)若该商场想获得500元的利润且尽可能地扩大销售量,则销售单价应定为多少元?
(4)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.
车辆经过润扬大桥收费站时,4个收费通道 、 、 、 中,可随机选择其中的一个通过.
(1)一辆车经过此收费站时,选择 通道通过的概率是 ;
(2)求两辆车经过此收费站时,选择不同通道通过的概率.
解不等式组 ,并求出它的所有整数解.
计算或化简:
(1) ;
(2) .
如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过 、 两点,与 轴的另一交点为点 .
(1)求抛物线的函数表达式;
(2)点 为直线 上方抛物线上一动点,
①连接 、 ,设直线 交线段 于点 , 的面积为 , 的面积为 ,求 的最大值;
②过点 作 ,垂足为点 ,连接 ,是否存在点 ,使得 中的某个角恰好等于 的2倍?若存在,求点 的横坐标;若不存在,请说明理由.