如图,椭圆的中心在坐标原点,长轴端点为A,B,右焦点为F,且.
(I) 求椭圆的标准方程;
(II)过椭圆的右焦点F作直线,直线l1与椭圆分别交于点M,N,直线l2与椭圆分别交于点P,Q,且
,求四边形MPNQ的面积S的最小值.
(1)求动点的轨迹
的方程;
(2)已知圆过定点
,圆心
在轨迹
上运动,且圆
与
轴交于
、
两点,设
,
,求
的最大值.
(1)求曲线E的方程;
(2)若过定点F(0,2)的直线交曲线E于G、H不同的两点,求此直线斜率的取值范围;
(3)若点G在点F、H之间,且满足的取值范围。
(1)求证:平面平面
;
(2)求正方形的边长;
(3)求二面角的平面角的正切值.
已知点是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点的轨迹方程;
(2)已知点,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
直线经过两条直线
:
和
的交点,且分这两条直线与
轴围成的三角形面积为
两部分,求直线
的一般式方程。