(本小题满分14分)如图,在直线之间表示的是一条河流,河流的一侧河岸(x轴)是一条公路,且公路随时随处都有公交车来往. 家住A(0,a)的某学生在位于公路上B(d,0)(d>0)处的学校就读. 每天早晨该学生都要从家出发,可以先乘船渡河到达公路上某一点,再乘公交车去学校,或者直接乘船渡河到达公路上B(d, 0)处的学校. 已知船速为
,车速为
(水流速度忽略不计).
(1)若d=2a,求该学生早晨上学时,从家出发到达学校所用的最短时间;
(2)若,求该学生早晨上学时,从家出发到达学校所用的最短时间.
已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)当a≠时,求函数f(x)的单调区间与极值.
设函数f(x)=a2ln x-x2+ax,a>0.
①求f(x)的单调区间;②求所有实数a,使e-1≤f(x)≤e2对x∈[1,e]恒成立.
一物体做变速直线运动,其v-t曲线如图所示,求该物体在s~6 s间的运动路程.
设y=f(x)是二次函数,方程f(x)=0有两个相等的实
根,且f′(x)=2x+2.
(1)求y=f(x)的表达式;
(2)求y=f(x)的图象与两坐标轴所围成图形的面积.
已知函数f(x)=x3-3ax2+2bx在点x=1处有极小值-1.
(1)求a、b;
(2)求f(x)的单调区间.