已知直线l的参数方程为(t为参数),曲线C的参数方程为
为参数).
(I )已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;
(II )设点Q是曲线C上的一个动点,求点Q到直线l的距离的最小值与最大值.
(本小题满分6分)
按要求完成下列各题:
⑴求函数的定义域;
⑵当时,证明函数
在
上是减函数.
(本小题满分8分)
⑴已知△ABC三个顶点的坐标分别为A(4,1),B(0,3),C(2,4),边AC的中点为D,求AC边上中线BD所在的直线方程并化为一般式;
⑵已知圆C的圆心是直线和
的交点上且与直线
相切,求圆C的方程.
已知中心在原点的椭圆的一个焦点为(0 ,),且过点
,过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点B和点C。
(1)求椭圆的标准方程;
(2)求证:直线BC的斜率为定值,并求这个定值。
(3)求三角形ABC的面积最大值。
如图,抛物线顶点在原点,圆的圆心是抛物线的焦点,直线
过抛物线的焦点,且斜率为2,直线
交抛物线与圆依次为
、
、
、
四点.
(1)求抛物线的方程.
(2)求的值.
已知命题:“,都有不等式
成立”是真命题。
(1)求实数的取值集合
;
(2)设不等式的解集为
,若
是
的充分不必要条件,求实数
的取值范围.