已知阿伏伽德罗常数为6.0×1023mol-1,在标准状态(压强p0=1atm、温度t0=0℃)下理想气体的摩尔体积都为22.4L,已知第(2)问中理想气体在状态C时的温度为27℃,求该气体的分子数(计算结果保留两位有效数字).
如图甲光滑水平面上静止并排放着MA ="2" kg,MB =3kg的A,B两物块,现给A物块施加一水平向右的外力F,外力F随物块的位移X变化如图乙所示,试求当位移X ="3m" 时,物块A对B作用力做功的瞬时功率?
如图所示,在光滑的水平面上,质量为4m、长为L的木板右端紧靠竖直墙壁,与墙壁不粘连。质量为m的小滑块(可视为质点)以水平速度v0滑上木板左端,滑到木板右端时速度恰好为零。现小滑块以水平速度v滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求的值。
)(如图所示,折射率为的两面平行的玻璃砖,下表面涂有反射物质,右端垂直地放置一标尺MN。一细光束以450角度入射到玻璃砖的上表面,会在标尺上的两个位置出现光点,若两光点之间的距离为a(图中未画出),则光通过玻璃砖的时间是多少?(设光在真空中的速度为c,不考虑细光束在玻璃砖下表面的第二次反射)
如图所示,在两端封闭粗细均匀的竖直长管道内,用一可自由移动的活塞A封闭体积相等的两部分气体。开始时管道内气体温度都为T0 =" 500" K,下部分气体的压强p0=1.25×105 Pa,活塞质量m = 0.25 kg,管道的内径横截面积S =1cm2。现保持管道下部分气体温度不变,上部分气体温度缓慢降至T,最终管道内上部分气体体积变为原来的,若不计活塞与管道壁间的摩擦,g =" 10" m/s2,求此时上部分气体的温度T。
(18分)
如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接.轨道宽度均为L=1m,电阻忽略不计.匀强磁场I仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T;匀强磁场II仅分布在倾斜轨道平面所在区域,方向垂直于倾斜轨道平面向下,大小B2=1T.现将两质量均为m=0.2kg,电阻均为R=0.5Ω的相同导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s2.
(1)求导体棒cd沿斜轨道下滑的最大速度的大小;
(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;
(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开始运动的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0=1T,试求cd棒在倾斜轨道上下滑的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.