某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件,后来经过市场调查,发现这种商品每降低1元,其销量可增加10件。
⑴求商场经营该商品原来一天可获利润多少元?
⑵设后来该商品每件降价x元,商场一天可获利y元。
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并通过画该函数图像的草图,观察其图象的变化趋势,结合题意写出该x取何值时,商场所获利润不少于2160元?
先化简再求值(本题6分),其中a满足
解不等式组
已知四边形ABCD,点E是射线BC上的一个动点(点E不与B、C两点重合),线段BE的垂直平分线交射线AC于点P,联结DP,PE.
(1)若四边形ABCD是正方形,猜想PD与PE的关系,并证明你的结论.
(2)若四边形ABCD是矩形,(1)中的PD与PE的关系还成立吗?(填:成立或不成立).
(3)若四边形ABCD是矩形,AB=6,cos∠ACD=,设AP=x,△PCE的面积为y,当AP>
AC时,求y与x之间的函数关系式.
已知:如图,二次函数y=a(x+1)2-4的图象与x轴分别交于A、B两点,与y轴交于点D,点C是二次函数y=a(x+1)2-4的图象的顶点,CD=.
(1)求a的值.
(2)点M在二次函数y=a(x+1)2-4图象的对称轴上,
且∠AMC=∠BDO,求点M的坐标.
(3)将二次函数y=a(x+1)2-4的图象向下平移k(k>0)个单位,平移后的图象与直线CD分别交于E、F两点(点F在点E左侧),设平移后的二次函数的图象的顶点为C1,与y轴的交点为D1,是否存在实数k,使得CF⊥FC1,若存在,求出k的值;若不存在,请说明理由.
已知二次函数
(1)求证:无论a为任何实数,二次函数的图象与x轴
总有两个交点.
(2)当x≥2时,函数值随
的增大而减小,求
的取
值范围.
(3)以二次函数图象的顶点
为一个顶点作该二次函数图象的内接正三角形
(M,N两点在二次函数的图象上),请问:△
的面积是与a无关的定值吗?若是,请求出这个定值;若不是,请说明理由.