(12分)如图(1),点A、B、C在同一直线上,且△ABE, △BCD都是等边三角形,连结AD,CE.
(1)△BEC可由△ABD顺时针旋转得到吗?若是,请描述这一旋转变换过程;若不是,请说明理由;
(2)若△BCD绕点B顺时针旋转,使点A,B,C不在同一直线上(如图(2)),则在旋转过程中:
①线段AD与EC的长度相等吗?请说明理由.
②锐角的度数是否改变?若不变,请求出
的度数;若改变,请说明理由.
(注:等边三角形的三条边都相等,三个角都是60°)
(本小题满分10分)已知关于x的方程mx2-(3m-1)x+2m-2=0
(1)求证:无论m取任何实数时,方程恒有实数根.
(2)若关于x的二次函数y= mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式.
(3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围.
(本小题满分9分)
如图,已知⊙O1与⊙O2都过点A,AO1是⊙O2的切线,⊙O1交O1O2于点B,连结AB并延长交⊙O2于点C,连结O2C.
(1)求证:O2C⊥O1O2;
(2)证明:AB·BC=2O2B·BO1;
(3)如果AB·BC=12,O2C=4,求AO1的长.
如图所示,某地区对某种药品的需求量y1(万件),供应量y2(万件)与价格x(元/件)分别近似满足下列函数关系式:y1=-x + 70,y2=2x-38,需求量为0时,即停止供应.当y1=y2时,该药品的价格称为稳定价格,需求量称为稳定需求量.
(1)求该药品的稳定价格与稳定需求量.
(2)价格在什么范围内,该药品的需求量低于供应量?
(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.
(本小题满分8分)如图所示,直线AB与反比例函数图像相交于A,B两点,已知A(1,4).
(1)求反比例函数的解析式;
(2)连结OA,OB,当△AOB的面积为时,求直线AB的解析式.
(本小题满分8分)暑假快到了,老家在十堰的大学生张明与王艳打算留在上海,为世博会做义工.学校争取到6个义工名额,分别安排在中国馆园区3个名额,世博轴园区2个名额,演义中心园区1个名额. 学校把分别标号为1、2、3、4、5、6的六个质地大小均相同的小球,放在不透明的袋子里,并规定标号1、2、3的到中国馆,标号4、5到世博轴,标号6的到演艺中心,让张明、王艳各摸1个.
(1)求张明到中国馆做义工的概率;
(2)求张明、王艳各自在世博轴、演艺中心做义工的概率(两人不同在一个园区内).