游客
题文

阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC中,D为BC中点,E、F分别为AB、AC上一点,且ED⊥DF,
求证:BE+CF>EF.
小明发现,延长FD到点H,使DH=FD,连结BH、EH,构造△BDH和△EFH,通过证明△BDH与△CDF全等、△EFH为等腰三角形,利用△BEH使问题得以解决(如图2).
参考小明思考问题的方法,解决问题:
如图3,在矩形ABCD中,O为对角线AC中点,将矩形ABCD翻折,使点B恰好与点O重合,EF为折痕,猜想EF、BE、FC之间的数量关系?并证明你的猜想.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于D、E两点,过点D作DF⊥AC,垂足为点F.

(1)求证:DF是⊙O的切线;
(2)若弧AE=弧DE,DF=2,求弧AD的长.

(1)如图:靠着22 m长的房屋后墙,围一块150 m2的矩形鸡场,现在有篱笆共40 m。求矩形的长、宽各多少米?

(2)若把“围一块150 m2的矩形鸡场”改为“围一块S m2的矩形鸡场”,其它条件不变,能否使S最大。若能,请你求出此时矩形的长、宽及最大面积;若不能,请你说明理由。

如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上。

(1)若,求的度数;
(2)若,求的长.

一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为,求n的值.

如图,方格纸中的每个小方格都是正方形,△ABC的顶点均在格点上,建立平面直角坐标系.(1)以原点为对称中心,画出与△ABC关于原点对称的△A1B1C1并写出A1 的坐标。(2)将原来的△ABC绕着点B顺时针旋转90°得到△A2B2C2,试在平面直角坐标系中画出△A2B2C2

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号