已知9个外语教师,4人只会英语,3人只会日语,另外2人既会英语又会日语,从中选4人,2人教英语,2人教日语,有多少种不同安排方案?(本题12分)
已知.
(1)求的单调增区间;
(2)求图象的对称轴的方程和对称中心的坐标;(3)在给出的直角坐标系中,请画出
在区间[
]上的图象.
已知集合,
,
(1)若,求
;
(2)若,求实数a的取值范围.
己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,斜率为1的直线
与椭圆C交于不同两点M,N.
(1)求椭圆C的方程;
(2)设直线过点F(1,0),求线段
的长;
(3)若直线过点(m,0),且以
为直径的圆恰过原点,求直线
的方程.
2013年某市某区高考文科数学成绩抽样统计如下表:
(1)求出表中m、n、M、N的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;(纵坐标保留了小数点后四位小数)
(2)若2013年北京市高考文科考生共有20000人,试估计全市文科数学成绩在90分及90分以上的人数;
(3)香港某大学对内地进行自主招生,在参加面试的学生中,有7名学生数学成绩在140分以上,其中男生有4名,要从7名学生中录取2名学生,求其中恰有1名女生被录取的概率.
如图,在三棱柱ABC-A1B1C1中,C1C⊥底面ABC,AC=BC=CC1=2,AC⊥BC,点D是AB的中点.
(1)求证:AC1∥平面CDB1;
(2)求三棱锥D-B1C1C的体积.