(本题10分)如图,△ABC中,∠A=90º,∠ABC与∠ACB的角平分线交于点I,△ABC的外角∠DBC与∠BCE的角平分线交于P。
①则∠BIC= ,∠P= (直接写出答案)
②当∠A的度数增加4º时,∠BIC,∠P的度数发生怎样的变化?请说明理由。
解不等式组并把解集在已画好的数轴上表示出来。
如图,抛物线与
轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当
=O和
=4时,y的值相等。直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M。
(1)求这条抛物线的解析式;
(2)P为线段OM上一点,过点P作PQ⊥轴于点Q。若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;
(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;
(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值。
如图,△ABC内接于⊙O,过点B作⊙O的切线,交于CA的延长线于点E,∠EBC=2∠C.
(1)求证:AB=AC;(2)当=
时,①求tan∠ABE的值;②如果AE=
,求AC的值。
如图,在小山的西侧A处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C处,这时热气球上的人发现,在A处的正东方向有一处着火点B,十分钟后,在D处测得着火点B的俯角为15°,求热气球升空点A与着火点B的距离。(结果保留根号,参考数据:
(,
,
,
)。
如图①,中,
,
.它的顶点
的坐标为
,顶点
的坐标为
,
,点
从点
出发,沿
的方向匀速运动,同时点
从点
出发,沿
轴正方向以相同速度运动,当点
到达点
时,两点同时停止运动,设运动的时间为
秒.
(1)求的度数.
(2)当点在
上运动时,
的面积
(平方单位)与时间
(秒)之间的函数图象为抛物线的一部分,(如图②),求点
的运动速度.
(3)求(2)中面积与时间
之间的函数关系式及面积
取最大值时点
的坐标.
(4)如果点保持(2)中的速度不变,那么点
沿
边运动时,
的大小随着时间
的增大而增大;沿着
边运动时,
的大小随着时间
的增大而减小,当点
沿这两边运动时,使
的点
有几个?请说明理由.