某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩,列出如下所示2×2列联表:
数学成绩 物理成绩 |
优秀 |
不优秀 |
合计 |
优秀 |
5 |
2 |
7 |
不优秀 |
1 |
12 |
13 |
合计 |
6 |
14 |
20 |
(1)根据题中表格的数据计算,你有多少的把握认为学生的数学成绩与物理成绩之间有关系?
(2)若按下面的方法从这20人(序号1,2,3,…,20)中抽取1人来了解有关情况:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.试求:①抽到12号的概率;②抽到 “无效序号(序号大于20)”的概率.
参考公式:,其中
)
临界值表供参考:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(Ⅰ)在等差数列中,
,求
及
;
(Ⅱ)在等比数列中,已知
,
,求
。
设数列满足
。
(1)求数列的通项公式
;
(2)令,求数列
的前
项和
;
。
已知某地今年年初拥有居民住房的总面积为(单位:m2),其中有部分旧住房需要拆除。当地有关部门决定每年以当年年初住房面积的10%建设新住房,同时也拆除面积为b(单位:m2)的旧住房。
(1)分别写出第一年末和第二年末的实际住房面积的表达式;
(2)如果第五年末该地的住房面积正好比今年年初的住房面积增加了30%,则每年拆除的旧住房面积b是多少?(计算时取1.15=1.6)
已知函数,
(1)解关于x的不等式f (x) > 0;
(2)若上恒成立,求a的取值范围。
已知数列的通项
。
(1)当为何值时,前
项的和
有最小值,并求出这个最小值。
(2)数列前
项和为
,求
。