游客
题文

已知圆的方程为且与圆相切.
(1)求直线的方程;
(2)设圆轴交于两点,M是圆上异于的任意一点,过点且与轴垂直的直线为,直线交直线于点P’,直线交直线于点Q’
求证:以P’Q’为直径的圆总过定点,并求出定点坐标.

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

已知椭圆的左右焦点分别是,离心率为椭圆上任一点,且的最大面积为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设斜率为的直线交椭圆两点,且以为直径的圆恒过原点,若实数满足条件,求的最大值.

已知函数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)当时,若在区间上的最小值为,求的取值范围.

已知数列为递增等差数列,且是方程的两根.数列为等比数列,且
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列的前项和

已知数列满足递推式:
(Ⅰ)若,求的递推关系(用表示);
(Ⅱ)求证:

已知椭圆的中心为原点,长轴长为,一条准线的方程为.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)射线与椭圆的交点为,过作倾斜角互补的两条直线,分别与椭圆交于两点(两点异于).求证:直线的斜率为定值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号