如图所示,用内壁光滑的薄壁细管弯成的“S”形轨道固定于竖直平面内,弯曲部分是由两个半径均为R =" 0.2" m 的半圆平滑对接而成(圆的半径远大于细管内径).轨道底端A与水平地面相切,顶端与一个长为l =" 0.9" m的水平轨道相切B点.一倾角为θ = 37°的倾斜轨道固定于右侧地面上,其顶点D与水平轨道的高度差为h =" 0.45" m,并与其它两个轨道处于同一竖直平面内.一质量为m =" 0.1" kg 的小物体(可视为质点)在A点被弹射入“S”形轨道内,沿轨道ABC运动,并恰好从D点以平行斜面的速度进入斜轨道.小物体与BC段间的动摩擦因数μ = 0.5. (不计空气阻力,g取10 m/s2.sin37°= 0.6,cos37°=" 0.8)"
(1)小物体从B点运动到D点所用的时间;
(2)小物体运动到B点时对“S”形轨道的作用力大小和方向;
(3)小物体在A点的动能.
有一个质量为m的小圆环瓷片最高能从h=0.18m高处静止释放后直接撞击地面而不被摔坏。现让该小圆环瓷片恰好套在一圆柱体上端且可沿圆柱体下滑,瓷片与圆柱体之间的摩擦力f=4.5mg。如图所示,若将该装置从距地面H=4.5m高处从静止开始下落,瓷片落地恰好没摔坏。已知圆柱体与瓷片所受的空气阻力都为自身重力的k=0.1倍,圆柱体碰地后速度立即变为零且保持竖直方向。g=10m/s2。求:
(1)瓷片直接撞击地面而不被摔坏时的最大着地速度v0;
(2)瓷片随圆柱体从静止到落地的时间t和圆柱体长度L。
如图所示,为车站使用的水平传送带装置模型,绷紧的传送带水平部分AB的长度L=5m,并以v=2m/s的速度向右运动。现将一个可视为质点的旅行包轻轻地无初速地放在传送带的A端,已知旅行包与皮带之间的动摩擦因数μ=0.2,g=10m/s2。求:
(1)旅行包在传送带上从A端运动到B端所用的时间t;
(2)旅行包在传送带上相对滑动时留下的痕迹的长度s。
如图所示,一质量为m=100kg的箱子静止在水平面上,与水平面间的动摩擦因素为μ=0.5。现对箱子施加一个与水平方向成θ=37°角的拉力,经t1=10s后撤去拉力,又经t2=1s箱子停下来。sin37°=0.6,cos37°=0.8,g=10m/s2。求:
(1)拉力F大小;(2)箱子在水平面上滑行的位移x。
如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角θ=30°,导轨电阻不计。磁感应强度为B=2T的匀强磁场垂直导轨平面向上,长为L=0.5m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨电接触良好,金属棒ab的质量m=1kg、电阻r=1Ω。两金属导轨的上端连接右端电路,灯泡电阻RL=4Ω,定值电阻R1=2Ω,电阻箱电阻R2=12Ω,重力加速度为g="10" m/s2,现闭合开关,将金属棒由静止释放,下滑距离为s0=50m时速度恰达到最大,试求:
(1)金属棒下滑的最大速度vm;
(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q。
如图所示,带电平行金属板相距为2R,在两板间半径为R的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度为B,两板及其左侧边缘连线均与磁场边界刚好相切。一带电粒子(不计重力)沿两板间中心线O1O2从左侧O1点以某一速度射入,沿直线通过圆形磁场区域,然后恰好从极板边缘飞出,在极板间运动时间为t0。若仅撤去磁场,质子仍从O1点以相同速度射入,经时间打到极板上。求:
(1)两极板间电压U;
(2)若两极板不带电,保持磁场不变,带电粒子仍沿中心线O1O2从O1点射入,欲使带电粒子从左侧飞出两板间,入射速度v应满足什么条件。