游客
题文

如图,平行四边形中,,且,正方形所在平面和平面垂直,分别是的中点.
(1)求证:平面
(2)求证:
(3)求三棱锥的体积.

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

分别是椭圆的 左,右焦点。
(1)若P是该椭圆上一个动点,求的 最大值和最小值。
(2)设过定点M(0,2)的 直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l斜率k的取值范围。

已知函数f(x)=ex+2x2—3x
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2) 当x ≥1时,若关于x的不等式f(x)≥ax恒成立,求实数a的取值范围;
(3)求证函数f(x)在区间[0,1)上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,≈1.6,e0.3≈1.3)。

已知a,b均为正数,且a+b=1,证明:
(1)
(2)

在平面直角坐标系中,原点为,抛物线的方程为,线段是抛物线的一条动弦.
(1)求抛物线的准线方程和焦点坐标;
(2)若,求证:直线恒过定点;
(3)当时,设圆,若存在且仅存在两条动弦,满足直线与圆相切,求半径的取值范围?

定义函数(为定义域)图像上的点到坐标原点的距离为函数的的模.若模存在最大值,则称之为函数的长距;若模存在最小值,则称之为函数的短距.
(1)分别判断函数是否存在长距与短距,若存在,请求出;
(2)求证:指数函数的短距小于1;
(3)对于任意是否存在实数,使得函数的短距不小于2,若存在,请求出的取值范围;不存在,则说明理由?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号