如图,平行四边形中,
,
,且
,正方形
所在平面和平面
垂直,
分别是
的中点.
(1)求证:平面
;
(2)求证:;
(3)求三棱锥的体积.
设分别是椭圆
的 左,右焦点。
(1)若P是该椭圆上一个动点,求的 最大值和最小值。
(2)设过定点M(0,2)的 直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l斜率k的取值范围。
已知函数f(x)=ex+2x2—3x
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2) 当x ≥1时,若关于x的不等式f(x)≥ax恒成立,求实数a的取值范围;
(3)求证函数f(x)在区间[0,1)上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,≈1.6,e0.3≈1.3)。
已知a,b均为正数,且a+b=1,证明:
(1)
(2)
在平面直角坐标系中,原点为
,抛物线
的方程为
,线段
是抛物线
的一条动弦.
(1)求抛物线的准线方程和焦点坐标
;
(2)若,求证:直线
恒过定点;
(3)当时,设圆
,若存在且仅存在两条动弦
,满足直线
与圆
相切,求半径
的取值范围?
定义函数(
为定义域)图像上的点到坐标原点的距离为函数的
的模.若模存在最大值,则称之为函数
的长距;若模存在最小值,则称之为函数
的短距.
(1)分别判断函数与
是否存在长距与短距,若存在,请求出;
(2)求证:指数函数的短距小于1;
(3)对于任意是否存在实数
,使得函数
的短距不小于2,若存在,请求出
的取值范围;不存在,则说明理由?