为了在夏季降温和冬季供暖时减少能源损耗 ,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用 (单位:万元)与隔热层厚度
(单位:cm)满足关系:
,若不建隔热层,每年能源消耗费用为8万元.设
为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求的值及
的表达式;
(Ⅱ)隔热层修建多厚时,总费用达到最小,并求最小值
(本小题满分13分)
已知函数(
为常数),直线l与函数
的图象都相切,且l与函数
的图象的切点的横坐标为l.
(Ⅰ)求直线l的方程及a的值;
(Ⅱ)当k>0时,试讨论方程的解的个数.
(本小题满分13分)
某地建一座桥,两端的桥墩已建好,这两墩相距米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为
米的相邻两墩之间的桥面工程费用为
万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为
万元。
(Ⅰ)试写出关于
的函数关系式;
(Ⅱ)当=640米时,需新建多少个桥墩才能使
最小?
已知集合A=,B=
.
⑴当a=2时,求AB;⑵求使B
A的实数a的取值范围.
(本小题满分12分)
已知函数的最小正周期为
.
(Ⅰ)求;
(Ⅱ)当时,求函数
的值域.
(本小题满分12分)
如图:在四棱锥中,底面
是菱形,
,
平面
,
点、
分别为
、
的中点,
.
(I)证明:平面
;
(II)在线段上是否存在一点
,使得
平面
;若存在,
求出
的长;若不存在,请说明理由。