已知函数,
(Ⅰ)时,求
的极小值;
(Ⅱ)若函数与
的图象在
上有两个不同的交点
,求
的取值范围.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(1) 求的值;
(2) 若该商品的成本为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.(利润=销售额-成本)
椭圆方程为,过点
的直线
交椭圆于
为坐标原点,点
满足
,当
绕点
旋转时,求动点
的轨迹方程.
设关于
的不等式,
的解集是
,
函数
的定义域为
.若“
或
”为真,“
且
”为假,求
的取值范围.
已知函数(
且
).
(1)求函数的单调区间;
(2)记函数的图象为曲线
.设点
,
是曲线
上的不同两点.如果在曲线
上存在点
,使得:①
;②曲线
在点
处的切线平行于直线
,则称函数
存在“中值相依切线”. 试问:函数
是否存在“中值相依切线”,请说明理由.
已知椭圆C:(a>b>0)的离心率为
,且经过点P(1,
)。
(1)求椭圆C的方程;
(2)设F是椭圆C的右焦点,M为椭圆上一点,以M为圆心,MF为半径作圆M。问点M满足什么条件时,圆M与y轴有两个交点?
(3)设圆M与y轴交于D、E两点,求点D、E距离的最大值。