游客
题文

已知函数
 (Ⅰ)若时,函数在其定义域上是增函数,求b的取值范围;
 (Ⅱ)在(Ⅰ)的结论下,设函数的最小值;
 (Ⅲ)设函数的图象C1与函数的图象C2交于PQ,过线段PQ的中点Rx轴的垂线分别交C1C2于点MN,问是否存在点R,使C1在M处的切线与C2N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分16分)对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “线性数列”.
(1)若,数列是否为“线性数列”?若是,指出它对应的实常数,若不是,请说明理由;
(2)证明:若数列是“线性数列”,则数列也是“线性数列”;
(3)若数列满足为常数.求数列项的和.

(本小题满分16分)已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且APB面积的最大值为2
(1)求椭圆C的方程及离心率;
(2)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明.

(本小题满分14分)某市近郊有一块大约的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其中总面积为3000平方米,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.

(1)分别用表示和S的函数关系式,并给出定义域;
(2)怎样设计能使S取得最大值,并求出最大值.

(本小题满分14分)如图,已知斜三棱柱中,的中点.

(1)若,求证:
(2)求证:∥平面

(本小题满分14分)在△ABC中,内角A,B,C的对边分别为a,b,c,若
(1)求的值;
(2)若,且,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号