对于数列,定义“
变换”:
将数列
变换成数列
,其中
,且
,这种“
变换”记作
.继续对数列
进行“
变换”,得到数列
,…,依此类推,当得到的数列各项均为
时变换结束.
(Ⅰ)试问和
经过不断的“
变换”能否结束?若能,请依次写出经过“
变换”得到的各数列;若不能,说明理由;
(Ⅱ)求经过有限次“
变换”后能够结束的充要条件;
(Ⅲ)证明:一定能经过有限次“
变换”后结束.
某班50名学生在一次数学考试中,成绩都属于区间[60,110],将成绩按如下方式分成五组:第一组[60,70);第二组[70,80);第三组[80,90);第四组[90,100);第五组[100,110],部分频率分布直方图如图7所示,及格(成绩不小于90分)的人数为20.
(Ⅰ)请补全频率分布直方图;
(Ⅱ)由此估计该班的平均分;
(Ⅲ)在成绩属于[60,70)∪[100,110]的学生中任取两人,成绩记为,求
的概率.
如图6,在三棱柱中,△ABC为等边三角形,侧棱
⊥平面
,
,D、E分别为
、
的中点.
(Ⅰ)求证:DE⊥平面;
(Ⅱ)求BC与平面所成角;
(Ⅲ)求三棱锥的体积.
甲、乙两人各掷一颗质地均匀的骰子,如果所得它们向上的点数之和为偶数,则甲赢,否则乙赢.
(Ⅰ)求两个骰子向上点数之和为8的事件发生的概率;
(Ⅱ)这种游戏规则公平吗?试说明理由
如图5,已知平面∩平面
=AB,PQ⊥
于Q,PC⊥
于C,CD⊥
于D.
(Ⅰ)求证:P、C、D、Q四点共面;
(Ⅱ)求证:QD⊥AB.
甲、乙两人同时生产一种产品,6天中,完成的产量茎叶图(茎表示十位,叶表示个位)如图所示:
(Ⅰ)写出甲、乙的众数和中位数;
(Ⅱ)计算甲、乙的平均数和方差,依此判断谁更优秀?