对于数列,定义“变换”:将数列变换成数列,其中,且,这种“变换”记作.继续对数列进行“变换”,得到数列,…,依此类推,当得到的数列各项均为时变换结束.(Ⅰ)试问和经过不断的“变换”能否结束?若能,请依次写出经过“变换”得到的各数列;若不能,说明理由;(Ⅱ)求经过有限次“变换”后能够结束的充要条件;(Ⅲ)证明:一定能经过有限次“变换”后结束.
已知. (1)若,解不等式; (2)若不等式对一切实数恒成立,求实数的取值范围; (3)若,解不等式.
已知直线过点. (1)当直线与点、的距离相等时,求直线的方程; (2)当直线与轴、轴围成的三角形的面积为时,求直线的方程.
已知是等差数列,其前项和为,已知 (1)求数列的通项公式; (2)设,证明:是等比数列,并求其前项和. (3) 设,求其前项和
在△中,∠,∠,∠的对边分别是,且 . (1)求∠的大小; (2)若,,求和的值.
函数的定义域为,且满足对于定义域内任意的都有等式. (1)求的值; (2)判断的奇偶性并证明; (3)若,且在上是增函数,解关于的不等式.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号