横峰中学将在四月份举行安全知识大奖赛,比赛分初赛和决赛两部分.为了增加节目的趣味性,初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题的正确率为.
(Ⅰ)求选手甲可进入决赛的概率;
(Ⅱ)设选手甲在初赛中答题的个数为,试写出
的分布列,并求
的数学期望.
已知函数.
(Ⅰ)试求的值域;
(Ⅱ)设若对
,
,恒
成立,试求实数
的取值范围
(本小题满分12分)
已知函数的图象过坐标原点O,且在点
处的切线的斜率是
(1)求实数的值;
(2)求在区间
上的最大值;
(3)对任意给定的正实数,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.
(本小题满分12分)已知等差数列为递增数列,且
是方程
的两根,数列
的前
项和
;
(1)求数列和
的通项公式;
(2)若,
为数列
的前n项和,证明:
已知是一个等差数列,且
,
。
(1)求的通项
;
(2)求的前
项和
的最大值.
(本小题满分12分)
已知函数.
(1)求的单调递增区间;
(2)求的最大值及取得最大值时相应的
的值.