以直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,并在两种坐标系中取相同的单位长度.已知直线l的极坐标方程为,曲线C的参数方程为
(α为参数).
(Ⅰ)求直线l的直角坐标方程和曲线C的普通方程;
(Ⅱ)若直线l与曲线C交于A、B两点,求线段AB的长
(本小题满分14分)某工厂统计资料显示,一种产品次品率与日产量
件之间的关系如下表所示:
日产量![]() |
80 |
81 |
82 |
… |
![]() |
… |
98 |
99 |
100 |
次品率![]() |
![]() |
![]() |
![]() |
… |
P(![]() |
… |
![]() |
![]() |
![]() |
其中(
为常数).已知生产一件正品盈利
元,生产一件次品损失
元(
为给定常数).(Ⅰ)求出
,并将该厂的日盈利额
(元)表示为日生产量
(件)的函数;
(Ⅱ)为了获得最大盈利,该厂的日生产量应该定为多少件?
(本小题满分14分)如图,单位圆(半径为1的圆)的圆心为坐标原点,单位圆与
轴的正半轴交与点
,与钝角
的终边
交于点
,设
.
(Ⅰ)用表示
;
(Ⅱ)如果,求点
的坐标;
(Ⅲ)求的最小值.
(本小题满分14分)如图,在四棱锥中,底面
为菱形,
⊥平面
,
为
的中点,
为
的中点,
求证:(Ⅰ)平面⊥平面
;(Ⅱ)
//平面
.
)已知,不等式
的解集为M.
(I)求M;
(II)当时,证明:
.
如图,AB是的弦,C、F是
上的点,OC垂直于弦AB,过点F作
的切线,交AB的延长线于D,连结CF交AB于点E.
(I) 求证:;
(II)若BE = 1,DE = 2AE,求 DF 的长.