已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。(Ⅰ)求椭圆的标准方程;(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q;
(本小题满分12分) 已知椭圆的两顶点与双曲线的焦点重合,它们的离心率之和为,若椭圆的焦点在轴上,求椭圆的方程。
(本小题满分12分) 已知方程有两个不相等的负实根,方程无实数根,若“或”为真,“且”为假,求实数的取值范围。
在直角坐标系中,直线与抛物线相交于A、B两点。 (1)求证:“如果直线过点T(3,0),那么=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由
已知函数。 (1)当时,求函数的最小值; (2)若对于任意>0恒成立,试求实数的取值范围。
已知椭圆(>>0)上一点(3,4),若,求椭圆方程。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号