游客
题文

正在建设中的长春地铁一号线将大大缓解市内南北交通的压力. 根据测算,如果一列车每次拖4节车厢,每天能来回16次;如果每次拖7节车厢,则每天能来回10次;每天来回次数是每次拖挂车厢节数的一次函数,每节车厢单向一次最多能载客110人,试问每次应拖挂多少节车厢才能使该列车每天营运人数最多?并求出每天最多的营运人数.(注:营运人数指列车运送的人数) .

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

某商场“五一”期间举行有奖促销活动,顾客只要在商店购物满800元就能得到一次摸奖机会.摸奖规则是:在盒子内预先放有5个大小相同的球,其中一个球标号是0,两个球标号都是40,还有两个球没有标号。顾客依次从盒子里摸球,每次摸一个球(不放回),若累计摸到两个没有标号的球就停止摸球,否则将盒子内球摸完才停止.奖金数为摸出球的标号之和(单位:元),已知某顾客得到一次摸奖机会。
(1)求该顾客摸三次球被停止的概率;
(2)设为该顾客摸球停止时所得的奖金数,求的分布列及均值.

中,角的对边分别为.已知,且
(1) 求角的大小;
(2)求的面积

等比数列{an}的各项均为正数,且
(1)求数列的通项公式;
(2)设,求数列的前项和.

如果以数列的任意连续三项作边长,都能构成一个三角形,那么称这样的数列为“三角形”数列;又对于“三角形”数列,如果函数y=f(x)使得由=f()()确定的数列仍成为一个“三角形”数列,就称y="f(x)" 是数列的“保三角形”函数。
(Ⅰ)、已知数列是首项为2012,公比为的等比数列,求证:是“三角形”数列;
(Ⅱ)、已知数列是首项为2,公差为1的等差数列,若函数f(x)=(m>0且m≠1)是的“保三角形”函数. 求m的取值范围.

向量=(4cos, sin), =(sin, 4cos),=(cos, -4sin)(均不等于).
(Ⅰ)、求的最大值;
(Ⅱ)、当⊥(-2)时,求tan+ tan的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号