已知双曲线C1:(a>0),抛物线C2的顶点在原点O,C2的焦点是C1的左焦点F1。
(1)求证:C1,C2总有两个不同的交点;
(2)问:是否存在过C2的焦点F1的弦AB,使ΔAOB的面积有最大值或最小值?若存在,求直线AB的方程与SΔAOB的最值,若不存在,说明理由。
如图椭圆(a>b>0)的上顶点为A,左顶点为B, F为右焦点, 过F作平行与AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上.
(1)求椭圆的离心率;
(2)若平行四边形OCED的面积为, 求椭圆方程.
已知复数
根据下列条件,求m值.
(1)z是实数;(2)z是虚线;(3)z是纯虚数;(4)z=0.
求证:关于x的方程x2+2ax+b="0" 有实数根,且两根均小于2的充分但不必要条件是a≥2且|b| ≤4.
给定两个命题,:对任意实数
都有
恒成立;
:关于
的方程
有实数根;如果
与
中有且仅有一个为真命题,求实数
的取值范围
分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假.
(1)矩形的对角线相等且互相平分;
(2)正偶数不是质数.