游客
题文

如图,在直角梯形ABCD中,∠D =∠BCD = 90°,∠B = 60°,AB = 6,AD = 9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G,如图①.

求CD的长及∠1的度数;
设DE = x,△GEF与梯形ABCD重叠部分的面积为y.求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?
当点G刚好落在线段BC上时,如图②,若此时将所得到的△EFG沿直线CB向左平移,速度为每秒1个单位,当E点移动到线段AB上时运动停止.设平移时间为t(秒),在平移过程中是否存在某一时刻t,使得△ABE为等腰三角形?若存在,求出t的值;若不存在,请说明理由

科目 数学   题型 解答题   难度 中等
知识点: 圆内接四边形的性质
登录免费查看答案和解析
相关试题

某学校打算购买甲乙两种不同类型的笔记本.已知甲种类型的笔记本的单价比乙种类型的要便宜 1 元,且用 110 购买的甲种类型的数量与用 120 元购买的乙种类型的数量一样.

(1)求甲乙两种类型笔记本的单价.

(2)该学校打算购买甲乙两种类型笔记本共 100 件,且购买的乙的数量不超过甲的 3 倍,则购买的最低费用是多少.

某工厂进行厂长选拔,从中抽出一部分人进行筛选,其中有“优秀”,“良好”,“合格”,“不合格”.

(1)本次抽查总人数为______,“合格”人数的百分比为______;

(2)补全条形统计图;

(3)扇形统计图中“不合格人数”的度数为______;

(4)在“优秀”中有甲乙丙三人,现从中抽出两人,则刚好抽中甲乙两人的概率为______.

化简求值: 2 x - 2 x - 1 ÷ x 2 - 4 x + 4 x 2 - x ,其中 x 4

π 1 0 - 9 + 2 cos 45 ° + 1 5 1

综合与实践

【问题情境】

数学活动课上,老师出示了一个问题:如图1,在正方形 A B C D 中,E是BC的中点, A E E P E P 与正方形的外角 D C G 的平分线交于 P 点.试猜想 A E E P 的数量关系,并加以证明;

【思考尝试】

(1)同学们发现,取 A B 的中点 F ,连接 E F 可以解决这个问题.请在图1中补全图形,解答老师提出的问题.

【实践探究】

(2)希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形 A B C D 中, E B C 边上一动点(点 E B 不重合), A E P 是等腰直角三角形, A E P 90 ° ,连接 C P ,可以求出 D C P 的大小,请你思考并解答这个问题.

【拓展迁移】

(3)突击小组深入研究希望小组提出的这个问题,发现并提出新的探究点:如图3,在正方形 A B C D 中, E B C 边上一动点(点 E B 不重合), A E P 是等腰直角三角形, A E P 90 ° ,连接 D P .知道正方形的边长时,可以求出 A D P 周长的最小值.当 A B 4 时,请你求出 A D P 周长的最小值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号